Vanishing Viscosity in the Barotropic b-Plane

نویسندگان

  • Sanjeeva Balasuriya
  • Barbara Lee Keyfitz
چکیده

The initial boundary value problems associated with the inviscid barotropic potential vorticity equation in the b-plane and its viscous analogue are considered. It is shown that the solution velocity to the viscous equation converges to the inviscid solution in a C1 sense for finite times and that, under additional smoothness assumptions on the inviscid flow, this convergence can be extended to C3. Ž . Moreover, this convergence occurs as O « , where « is the viscous parameter. This particular form of vanishing viscosity is of relevance in analysing viscosity induced advection for barotropic models. Q 1997 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Time Result for Vanishing Viscosity with Nondecaying Velocity and Vorticity

 ∂tv + v · ∇v = −∇p div v = 0 v|t=0 = v. In this paper, we study the vanishing viscosity limit. The question of vanishing viscosity addresses whether or not a solution vν of (NS) converges in some norm to a solution v of (E) with the same initial data as viscosity tends to 0. This area of research is active both for solutions in a bounded domain and for weak solutions in the plane. We focus ou...

متن کامل

The Vanishing Viscosity Limit in the Presence of a Porous Medium

We consider the flow of a viscous, incompressible, Newtonian fluid in a perforated domain in the plane. The domain is the exterior of a regular lattice of rigid particles. We study the simultaneous limit of vanishing particle size and distance, and of vanishing viscosity. Under suitable conditions on the particle size, particle distance, and viscosity, we prove that solutions of the Navier-Stok...

متن کامل

Vanishing Viscosity in the Plane for Nondecaying Velocity and Vorticity

Assuming that initial velocity and initial vorticity are bounded in the plane, we show that on a sufficiently short time interval the unique solutions of the Navier-Stokes equations converge uniformly to the unique solution of the Euler equations as viscosity approaches zero. We also establish a rate of convergence.

متن کامل

Vanishing Viscosity in the Plane for Nondecaying Vorticity

Assuming that initial velocity has finite energy and initial vorticity is bounded in the plane, we show that on any finite time interval the unique solutions of the Navier-Stokes equations converge uniformly to the unique solution of the Euler equations as viscosity approaches zero. We also establish a rate of convergence.

متن کامل

A Finite Time Result for Vanishing Viscosity in the Plane with Nondecaying Vorticity

Assuming that initial velocity has finite energy and initial vorticity is bounded in the plane, we show that the unique solutions of the Navier-Stokes equations converge to the unique solution of the Euler equations in the L∞-norm uniformly over finite time as viscosity approaches zero. We also establish a rate of convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997